A270443 Least m such that d(n^m) > n, where d(n) is the number of divisors of n.
2, 3, 2, 5, 2, 7, 3, 5, 3, 11, 2, 13, 3, 3, 4, 17, 3, 19, 3, 4, 4, 23, 3, 13, 5, 9, 4, 29, 3, 31, 7, 5, 5, 5, 3, 37, 6, 6, 4, 41, 3, 43, 4, 5, 6, 47, 3, 25, 5, 7, 5, 53, 4, 7, 4, 7, 7, 59, 3, 61, 7, 5, 11, 8, 4, 67, 6, 8, 4, 71, 4, 73, 8, 6, 6, 8, 4, 79, 4, 21
Offset: 2
Examples
d(4^1) = 3, d(4^2) = 5 then a(4) = 2; d(9^1) = 3, d(9^2) = 5, d(9^3) = 7, d(9^4) = 9, d(9^5) = 11, then a(9) = 5.
Links
- Paolo P. Lava, Table of n, a(n) for n = 2..500
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 2 to q do a:=tau(n); k:=1; while a
-
Mathematica
nn = 100; Table[SelectFirst[Range@ nn, DivisorSigma[0, n^#] > n &], {n, 2, nn}] (* Michael De Vlieger, Mar 17 2016, Version 10 *)
-
PARI
a(n) = {p=1; until (numdiv(n^p) > n, p++); p;} \\ Michel Marcus, Mar 17 2016
Comments