A270448 Numbers k such that 10^k - 8001 is prime.
4, 6, 8, 11, 12, 14, 23, 26, 42, 50, 54, 55, 66, 136, 145, 151, 200, 214, 888, 896, 1674, 2311, 2799, 2836, 2912, 5192, 5907, 8644, 8681, 11914, 18140, 27383, 36549, 57358, 84582, 161253, 167639, 186842, 193230, 204764
Offset: 1
Examples
4 is in this sequence because 10^4-8001 = 1999 is prime. Initial terms and associated primes: a(1) = 4, 1999; a(2) = 6, 991999; a(3) = 8, 99991999; a(4) = 11, 99999991999; a(5) = 12, 999999991999, etc.
Links
- Makoto Kamada, Search for 9w1999.
Programs
-
Maple
isa := n -> isprime(10^n-8001): select(isa, [$0..1000]); # Peter Luschny, Jul 22 2019
-
Mathematica
Select[Range[0, 100000], PrimeQ[10^#-8001 && # > 3] &] (* Corrected by Georg Fischer, Jul 22 2019 *)
-
PARI
isok(n) = isprime(10^n-8001); \\ Michel Marcus, Mar 18 2016
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime(10^n-8001), print1(n, ", "))); \\ Altug Alkan, Mar 18 2016
Extensions
a(36)-a(39) from Robert Price, Mar 27 2018
a(40) from Robert Price, May 31 2023
Comments