A270487 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r(k) = 1/Prime(k).
1, 2, 2, 6, 29, 860, 626907, 1582796431872, 4577382865450526674426008, 77218331531088831524423800072197013265311322482652, 10410509369911993512345323774444196964795747018426948027297775848734862056109801420845614477793011811
Offset: 1
Examples
(1/2)^(1/3) = 1/(2*1) + 1/(3*2) + 1/(5*2) + 1/(7*6) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..13
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/Prime[k]; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/prime(k); f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=(1/2)^(1/3)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 31 2016
Comments