A270519 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r(k) = 1/k!.
3, 7, 18, 217, 21586, 132830816, 8232750479147118, 8738244742575919521189548340591, 28575128242342620144630216663972970082807062570299713849045286
Offset: 1
Examples
sqrt(2) - 1 = 1/(1*3) + 1/(2*7) + 1/(6*18) + 1/(24*217) + ...
Links
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/k!; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[2] - 1; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/k!; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(2)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 31 2016
Comments