A270520 Denominators of r-Egyptian fraction expansion for sqrt(3) - 1, where r(k) = 1/k!.
2, 3, 3, 5, 6, 14, 28, 352, 18574, 44518346, 400826881311158, 25342673472297507115832358714, 62130292590921086469117151395751018383242940308998211770
Offset: 1
Examples
sqrt(3) - 1 = 1/(1*2) + 1/(2*3) + 1/(6*3) + 1/(24*5) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..20
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/k!; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[3] - 1; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/k!; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(3)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 31 2016
Comments