A270548 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r(k) = 1/(2k-1).
3, 5, 15, 163, 29203, 1370794960, 5693192315226228214, 247405800822801380465687897681838336769, 267682228701778523205506744045084667800917057557706608910309126004853790212423
Offset: 1
Examples
sqrt(2) - 1 = 1/(1*3) + 1/(3*5) + 1/(5*15) + 1/(7*163) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt(2) - 1; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/(2*k-1); f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(2)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Apr 03 2016
Comments