cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270566 Number of ordered ways to write n as x^4 + y*(3y+1)/2 + z*(7z+1)/2, where x, y and z are integers with x nonnegative.

Original entry on oeis.org

1, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 4, 4, 4, 5, 5, 3, 3, 1, 3, 5, 4, 3, 3, 5, 8, 4, 3, 4, 6, 6, 2, 6, 4, 4, 5, 4, 3, 3, 4, 5, 1, 3, 3, 2, 6, 2, 4, 5, 8, 8, 4, 3, 5, 6, 6, 2, 1, 4, 3, 5, 3, 2, 3, 7, 8, 3, 5, 5, 4, 3, 4, 1, 1, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 19 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 24, 47, 63, 78, 79, 143, 153, 325, 494, 949, 1079, 3328, 4335, 5609, 7949, 7967, 8888, 9665.
Conjecture verified for n up to 10^11. - Mauro Fiorentini, Jul 24 2023

Examples

			a(24) = 1 since 24 = 2^4 + (-2)*(3*(-2)+1)/2 + (-1)*(7*(-1)+1)/2.
a(78) = 1 since 78 = 1^4 + 7*(3*7+1)/2 + 0*(7*0+1)/2.
a(143) = 1 since 143 = 1^4 + 6*(3*6+1)/2 + (-5)*(7*(-5)+1)/2.
a(494) = 1 since 494 = 4^4 + (-7)*(3*(-7)+1)/2 + (-7)*(7*(-7)+1)/2.
a(949) = 1 since 949 = 4^4 + 0*(3*0+1)/2 + 14*(7*14+1)/2.
a(1079) = 1 since 1079 = 0^4 + 25*(3*25+1)/2 + 6*(7*6+1)/2.
a(3328) = 1 since 3328 = 0^4 + 38*(3*38+1)/2 + 18*(7*18+1)/2.
a(4335) = 1 since 4335 = 2^4 + 49*(3*49+1)/2 + 14*(7*14+1)/2.
a(5609) = 1 since 5609 = 0^4 + (-61)*(3*(-61)+1)/2 + 4*(7*4+1)/2.
a(7949) = 1 since 7949 = 3^4 + 43*(3*43+1)/2 + 38*(7*38+1)/2.
a(7967) = 1 since 7967 = 7^4 + (-61)*(3*(-61)+1)/2 + 2*(7*2+1)/2.
a(8888) = 1 since 8888 = 0^4 + (-77)*(3*(-77)+1)/2 + 3*(7*3+1)/2.
a(9665) = 1 since 9665 = 3^4 + 73*(3*73+1)/2 + 21*(7*21+1)/2.
		

Crossrefs

Programs

  • Mathematica
    (* From Zhi-Wei Sun, Start *)
    pQ[n_] := pQ[n] = IntegerQ[Sqrt[24 n + 1]];
    Do[r = 0; Do[If[pQ[n - x^4 - y (7 y + 1)/2], r = r + 1], {x, 0, n^(1/4)}, {y, -Floor[(Sqrt[56 (n - x^4) + 1] + 1)/14], (Sqrt[56 (n - x^4) + 1] - 1)/14}]; Print[n, " ", r]; Continue, {n, 0, 80}]
    (* From Zhi-Wei Sun, End *)
    A270566[n_] := Length@Solve[x >= 0 && n == x^4 + y*(3 y + 1)/2 + z*(7 z + 1)/2, {x, y, z}, Integers];
    Array[A270566, 25, 0] (* JungHwan Min, Mar 19 2016 *)