A270594 Number of ordered ways to write n as the sum of a triangular number, a positive square and the square of a generalized pentagonal number (A001318).
1, 2, 1, 2, 4, 2, 2, 4, 2, 3, 5, 2, 2, 3, 3, 4, 3, 2, 4, 5, 1, 2, 5, 1, 3, 7, 3, 2, 6, 5, 3, 6, 2, 2, 5, 4, 6, 4, 3, 5, 8, 2, 2, 6, 2, 5, 5, 1, 4, 9, 5, 3, 8, 5, 4, 8, 4, 3, 5, 5, 5, 6, 3, 6, 11, 2, 3, 9, 2, 5, 12, 2, 2, 9, 6, 3, 4, 4, 5, 6, 6, 6, 5, 5, 6, 11, 2, 4, 8, 1
Offset: 1
Keywords
Examples
a(21) = 1 since 21 = 1*2/2 + 4^2 + (1*(3*1+1)/2)^2. a(24) = 1 since 24 = 5*6/2 + 3^2 + (0*(3*0-1)/2)^2. a(468) = 1 since 468 = 0*1/2 + 18^2 + (3*(3*3-1)/2)^2. a(7538) = 1 since 7538 = 64*65/2 + 47^2 + (6*(3*6+1)/2)^2. a(7731) = 1 since 7731 = 82*83/2 + 62^2 + (4*(3*4-1)/2)^2. a(8522) = 1 since 8522 = 127*128/2 + 13^2 + (3*(3*3+1)/2)^2. a(14763) = 1 since 14763 = 164*165/2 + 33^2 + (3*(3*3-1)/2)^2. a(16222) = 1 since 16222 = 168*169/2 + 45^2 + (1*(3*1-1)/2)^2. a(17143) = 1 since 17143 = 182*183/2 + 21^2 + (2*(3*2+1)/2)^2. a(24958) = 1 since 24958 = 216*217/2 + 39^2 + (1*(3*1-1)/2)^2. a(26148) = 1 since 26148 = 10*11/2 + 142^2 + (7*(3*7+1)/2)^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- B. K. Oh and Z.-W. Sun, Mixed sums of squares and triangular numbers (III), J. Number Theory 129(2009), 964-969.
- Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
- Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
- Z.-W. Sun, On universal sums ax^2+by^2+f(z), aT_x+bT_y+f(z) and zT_x+by^2+f(z), preprint, arXiv:1502.03056 [math.NT], 2015.
Crossrefs
Programs
-
Mathematica
pQ[n_]:=pQ[n]=IntegerQ[n]&&IntegerQ[Sqrt[24n+1]] Do[r=0;Do[If[pQ[Sqrt[n-x^2-y(y+1)/2]],r=r+1],{x,1,Sqrt[n]},{y,0,(Sqrt[8(n-x^2)+1]-1)/2}];Print[n," ",r];Continue,{n,1,90}]
Comments