A270596 Primes p congruent to 11 mod 12 (A068231), such that there exists a nonzero element c of GF(p), such that the element c, c-1 and -1 generate a proper subgroup of the multiplicative group.
131, 191, 239, 251, 311, 419, 431, 491, 599, 647, 659, 683, 743, 827, 911, 971, 1031, 1091, 1103, 1151, 1163, 1223, 1259, 1451, 1499, 1511, 1559, 1571, 1583, 1607, 1667, 1787, 1811, 1847, 1871, 1931, 2003, 2087, 2111, 2243, 2267, 2339, 2351, 2399, 2411, 2423, 2531, 2591, 2663, 2687, 2699, 2711, 2843, 2927, 2939, 3011
Offset: 1
Keywords
Links
- Joerg Arndt, Table of n, a(n) for n = 1..1983
- Peter Cameron's Blog, Permutation groups and regular semigroups, 2, Posted 22/08/2015.
- Michel Marcus, GAP program with issues
Programs
-
PARI
{ forprime(p=11, 10^6, if ( p%12 != 11, next() ); for (c=2, p-2, my( v = vector(p-1) ); my( g0 = Mod(c, p), rc0 = znorder(g0) ); if ( rc0 == p - 1, next() ); if ( znorder( -g0 ) == p - 1, next() ); my( g1 = Mod(c-1, p), rc1 = znorder(g1) ); if ( rc1 == p - 1, next() ); if ( znorder( -g1 ) == p - 1, next() ); if ( znorder( g0*g1 ) == p - 1, next() ); if ( znorder( -g0*g1 ) == p - 1, next() ); for (x0 = 0, rc0, my ( p0 = g0^x0, z = p0 ); for (x1 = 0, rc1, v[lift(z)] = 1; v[p - lift(z)] = 1; z * = g1; ); ); my( s = sum(k=1,#v,v[k]) ); if ( s < p - 1, print1(p,", "); break() ); ); ); } \\ Joerg Arndt, Mar 20 2016
Extensions
Terms > 500 by Joerg Arndt, Mar 20 2016
Comments