cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270668 Triangle read by rows: The number of domino tilings of the (2n+1) X (2m+1) board with a central free square.

Original entry on oeis.org

1, 0, 2, 1, 0, 196, 0, 32, 0, 75272, 1, 0, 31329, 0, 599466256, 0, 450, 0, 135663392, 0, 28838245503008, 1, 0, 4941729, 0, 10956424382401, 0, 22463213552677201984, 0, 6272, 0, 233075146752, 0, 5652453608244879872, 0, 123818965842734619629420672
Offset: 0

Views

Author

R. J. Mathar, Mar 21 2016

Keywords

Comments

Arrangements obtained by rotations and flips are counted as distinct.

Examples

			For n=m=1, the 3 X 3 board can be covered in T(1,1)=2 ways, starting in one corner with either a horizontal or a vertical domino.
Triangle begins:
1;
0, 2;
1, 0, 196;
0, 32, 0, 75272;
1, 0, 31329, 0, 599466256;
0, 450, 0, 135663392, 0, 28838245503008;
1, 0, 4941729, 0, 10956424382401, 0, 22463213552677201984;
		

Crossrefs

Cf. A098301, A143659 (diagonal), A189006 (free square in corner).

Formula

T(n,0) = A059841(n).
T(2n+1,1) = 2 * A098301(n+1). - Alois P. Heinz, Mar 21 2016
T(2n+1,1) = 2*A189006(2n+1,3)^2. - R. J. Mathar, Mar 22 2016
Conjectured g.f. for column 3: ( -1 -4*x +543*x^2 -6238*x^3 +17032*x^4 -6238*x^5 +543*x^6 -4*x^7 -x^8 ) / ( (x-1) *(x^2-7*x+1) *(x^2-23*x+1) *(x^4 -161*x^3 +576*x^2 -161*x +1) ). - R. J. Mathar, Mar 23 2016

Extensions

More terms from Alois P. Heinz, Mar 21 2016