A270668 Triangle read by rows: The number of domino tilings of the (2n+1) X (2m+1) board with a central free square.
1, 0, 2, 1, 0, 196, 0, 32, 0, 75272, 1, 0, 31329, 0, 599466256, 0, 450, 0, 135663392, 0, 28838245503008, 1, 0, 4941729, 0, 10956424382401, 0, 22463213552677201984, 0, 6272, 0, 233075146752, 0, 5652453608244879872, 0, 123818965842734619629420672
Offset: 0
Examples
For n=m=1, the 3 X 3 board can be covered in T(1,1)=2 ways, starting in one corner with either a horizontal or a vertical domino. Triangle begins: 1; 0, 2; 1, 0, 196; 0, 32, 0, 75272; 1, 0, 31329, 0, 599466256; 0, 450, 0, 135663392, 0, 28838245503008; 1, 0, 4941729, 0, 10956424382401, 0, 22463213552677201984;
Links
Formula
T(n,0) = A059841(n).
T(2n+1,1) = 2 * A098301(n+1). - Alois P. Heinz, Mar 21 2016
T(2n+1,1) = 2*A189006(2n+1,3)^2. - R. J. Mathar, Mar 22 2016
Conjectured g.f. for column 3: ( -1 -4*x +543*x^2 -6238*x^3 +17032*x^4 -6238*x^5 +543*x^6 -4*x^7 -x^8 ) / ( (x-1) *(x^2-7*x+1) *(x^2-23*x+1) *(x^4 -161*x^3 +576*x^2 -161*x +1) ). - R. J. Mathar, Mar 23 2016
Extensions
More terms from Alois P. Heinz, Mar 21 2016
Comments