A270701 Total sum T(n,k) of the sizes of all blocks with maximal element k in all set partitions of {1,2,...,n}; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 1, 3, 2, 4, 9, 5, 9, 16, 30, 15, 25, 41, 67, 112, 52, 82, 127, 195, 299, 463, 203, 307, 456, 670, 979, 1429, 2095, 877, 1283, 1845, 2623, 3702, 5204, 7307, 10279, 4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267, 21147, 29427, 40338, 54692, 73561, 98367, 131007, 174029, 230884, 306298
Offset: 1
Examples
Row n=3 is [2, 4, 9] = [0+0+0+1+1, 0+2+1+0+1, 3+1+2+2+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3. Triangle T(n,k) begins: : 1; : 1, 3; : 2, 4, 9; : 5, 9, 16, 30; : 15, 25, 41, 67, 112; : 52, 82, 127, 195, 299, 463; : 203, 307, 456, 670, 979, 1429, 2095; : 877, 1283, 1845, 2623, 3702, 5204, 7307, 10279; : 4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Wikipedia, Partition of a set
Crossrefs
Columns k=1-10 give: A000110(n-1), A270756, A270757, A270758, A270759, A270760, A270761, A270762, A270763, A270764.
Main and lower diagonals give: A124427, A270765, A270766, A270767, A270768, A270769, A270770, A270771, A270772, A270773.
Row sums give A070071.
Reflected triangle gives A270702.
T(2n-1,n) gives A270703.
Programs
-
Maple
b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add( `if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1, [0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j, `if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1)) end: T:= (n, k)-> b(n, 0, max(0, 1+n-k))[2]: seq(seq(T(n, k), k=1..n), n=1..12);
-
Mathematica
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m+1, 0, Function[p, p + If[j == -t || t == 1 && j == m+1, {0, p[[1]]}, 0]][b[ n-1, Max[m, j], If[t == 1 && j == m+1, -j, If[t < 0, t, If[t > 0, t-1, 0] ]]]]], {j, 1, m+1}]]; T[n_, k_] := b[n, 0, Max[0, 1+n-k]][[2]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)
Formula
T(n,k) = A270702(n,n-k+1).