cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270709 a(n) = (n+1)*Sum_{k=0..(n-1)/2} (binomial(k+1,n-2*k-1)*binomial(2*k,k)/(k+1)^2).

Original entry on oeis.org

0, 2, 3, 2, 5, 7, 14, 26, 51, 103, 209, 435, 910, 1930, 4122, 8874, 19227, 41893, 91751, 201839, 445841, 988403, 2198547, 4905147, 10974210, 24615134, 55341636, 124694354, 281525678, 636802626, 1442953404, 3274997130, 7444505615, 16946749249
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 22 2016

Keywords

Crossrefs

Cf. A000108.

Programs

  • Mathematica
    Table[(n+1)*Sum[Binomial[k+1,n-2*k-1] * Binomial[2*k,k] / (k+1)^2, {k,0,(n-1)/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 22 2016 *)
  • Maxima
    makelist(coeff(taylor(((3*x+2)*(1-sqrt(1-4*(x^3+x^2))))/(2*(x^2+x)),x,0,15),x,n),n,0,15);
    a(n):=(n+1)*sum((binomial(k+1,n-2*k-1)*binomial(2*k,k))/(k+1)^2,k,0,(n-1)/2);
    
  • PARI
    x='x+O('x^200); concat(0, Vec(((3*x+2)*(1-sqrt(1-4*(x^3+x^2))))/(2*(x^2+x)))) \\ Altug Alkan, Mar 22 2016

Formula

G.f.: ((3*x+2)*(1-sqrt(1-4*(x^3+x^2))))/(2*(x^2+x)).
a(n) ~ (3*r+2) * sqrt(3-4*r^2) * 2^(2*n+2) * r^(n+3) * (r+1)^(n+1) / (n^(3/2) * sqrt(Pi)), where r = 0.41964337760708... is the real root of the equation 4*r^2*(1+r) = 1. - Vaclav Kotesovec, Mar 22 2016