cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A270724 a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))/(k+1)*C(k)), where C(k) is Catalan numbers.

Original entry on oeis.org

1, 3, 5, 10, 20, 42, 93, 213, 504, 1221, 3014, 7553, 19158, 49087, 126845, 330174, 864884, 2278138, 6030218, 16031950, 42790362, 114616360, 307996874, 830084080, 2243193198, 6076953906, 16500486744, 44897830740, 122406923038, 334333367602
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 22 2016

Keywords

Crossrefs

Programs

  • Maple
    A270724 := proc(n)
        a := 0 ;
        for k from 0 to n/2 do
            for i from 0 to n-2*k do
                a := a+binomial(k+1,n-2*k-i)*binomial(k+i,k)/(k+1)*A000108(k) ;
            end do:
        end do:
        %*(n+2)/2 ;
    end proc: # R. J. Mathar, Oct 07 2016
  • Mathematica
    Table[((n + 2)/2) Sum[Sum[(Binomial[k + 1, n - 2 k - i] Binomial[k + i, k]) Binomial[2 k, k]/(k + 1)^2, {i, 0, n - 2 k}], {k, 0, n/2}], {n, 0, 29}] (* or *)
    CoefficientList[Series[((-x^2 + x + 1) (1 - Sqrt[1 - (4 x^2 (x + 1))/(1 - x)]))/(2 x^2*(1 - x^2)), {x, 0, 29}], x] (* Michael De Vlieger, Mar 25 2016 *)
  • Maxima
    a(n):=((n+2)/2)*(sum(sum(binomial(k+1,n-2*k-i)*binomial(k+i,k),i,0,n-2*k)/(k+1)^2*binomial(2*k,k),k,0,n/2));
    
  • PARI
    x='x+O('x^200); Vec(((-x^2+x+1)*(1-sqrt(1-(4*x^2*(x+1))/(1-x))))/(2*x^2*(1-x^2))) \\ Altug Alkan, Mar 22 2016

Formula

G.f.: ((-x^2+x+1)*(1-sqrt(1-(4*x^2*(x+1))/(1-x))))/(2*x^2*(1-x^2)).
a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))*binomial(2*k,k)/(k+1)^2).
Conjecture: (n+2)*a(n) +(-n-2)*a(n-1) +(-7*n+6)*a(n-2) +10*a(n-3) +(13*n-32)*a(n-4) +(5*n-32)*a(n-5) +(-11*n+52)*a(n-6) +4*(-n+6)*a(n-7) +4*(n-7)*a(n-8)=0. - R. J. Mathar, Oct 07 2016
Showing 1-1 of 1 results.