A270746 (r,1)-greedy sequence, where r(k) = 2/e^k.
1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 15, 107, 4536, 9767531, 119608113171152, 27706455600364135685442345886, 683882728856994887705617234665700899371621018916716222985
Offset: 1
Examples
a(1) = ceiling(r(1)) = ceiling(2/e) = ceiling(0.735...) = 1; a(2) = ceiling(r(2)/(1 - r(1)/1)) = 2; a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/2)) = 2. The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.735..., 0.871..., 0.970..., 0.975..., 0.988..., 0.995...
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 19; r[k_] := N[2/E^k, 1000]; f[x_, 0] = x; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1; Table[n[x, k], {k, 1, z}] N[Sum[r[k]/n[x, k], {k, 1, 19}], 200]
Formula
a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1.
Comments