A270744 (r,1)-greedy sequence, where r(k) = 1/tau^k, where tau = golden ratio.
1, 2, 2, 3, 4, 32, 1065, 2038968, 5977146319204, 36314862033946243071181679, 1028280647188781709727717632740627249617427013751977, 958046899855070460620234639622630375078362220775180051610386376308132568342498992099474472596860400289
Offset: 1
Examples
a(1) = ceiling(r(1)) = ceiling(1/tau) = ceiling(0.618...) = 1; a(2) = ceiling(r(2)/(1 - r(1)/1)) = 2; a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/2)) = 2. The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.618..., 0.809..., 0.927..., 0.975..., 0.998..., 0.999967... .
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 13; r[k_] := N[1/GoldenRatio^k, 1000]; f[x_, 0] = x; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1; Table[n[x, k], {k, 1, z}] N[Sum[r[k]/n[x, k], {k, 1, 13}], 200]
Formula
a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1.
Comments