A270747 (r,1)-greedy sequence, where r(k) = 4/Pi^k.
2, 2, 1, 2, 2, 1, 3, 7, 71, 3131, 5821925, 14364035515947, 451397201144015321568515204, 88020328073777548345010277436911545872870466008026310, 4344173888544359227731947461270153179826227998155726069662805370800638822815760136590246135744249701337368
Offset: 1
Examples
a(1) = ceiling(r(1)) = ceiling(4/Pi) = ceiling(1.273...) = 2; a(2) = ceiling(r(2)/(1 - r(1)/2)) = 2; a(3) = ceiling(r(3)/(1 - r(1)/2 - r(2)/2)) = 1. The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.636..., 0.839..., 0.968..., 0.988..., 0.995..., 0.9994...
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 16; r[k_] := N[4/Pi^k, 1000]; f[x_, 0] = x; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1; Table[n[x, k], {k, 1, z}] N[Sum[r[k]/n[x, k], {k, 1, 18}], 200]
Formula
a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1.
Comments