A270749 (r,1)-greedy sequence, where r(k) = k/log(k+1).
2, 7, 117, 28231, 934841727, 1391154929853413822, 3358221400639080017571595039208647108, 84149630763494298099512446622134485046922136023978562834130778814722933257
Offset: 1
Examples
a(1) = ceiling(r(1)) = ceiling(1/log(2)) = ceiling(1.442...) = 2; a(2) = ceiling(r(2)/(1 - r(1)/2)) = 7; a(3) = ceiling(r(3)/(1 - r(1)/2 - r(2)/7)) = 117. The first 3 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.721..., 0.981..., 0.99991...
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 16; r[k_] := N[k/Log[k + 1], 1000]; f[x_, 0] = x; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1; Table[n[x, k], {k, 1, z}] N[Sum[r[k]/n[x, k], {k, 1, 18}], 200]
Formula
a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1.
Comments