A270750 (r,1)-greedy sequence, where r(k) = 1/(k*log(k+1)).
2, 2, 5, 52, 7132, 657650603, 642344866115572775, 833790618410287382945149122154404558, 1229679779588111283437146138551802288646488858072438842199407751052675116
Offset: 1
Examples
a(1) = ceiling(r(1)) = ceiling(1/log(2)) = ceiling(1.442...) = 2; a(2) = ceiling(r(2)/(1 - r(1)/2)) = 2; a(3) = ceiling(r(3)/(1 - r(1)/2 - r(2)/2)) = 5. The first 3 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.721..., 0.948..., 0.996...
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; z = 16; r[k_] := N[1/(k*Log[k + 1]), 1000]; f[x_, 0] = x; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1; Table[n[x, k], {k, 1, z}] N[Sum[r[k]/n[x, k], {k, 1, 18}], 200]
Formula
a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1.
Comments