A270802 Primes p of the form 14*k+1 for which there is a solution to x^7 == 2 mod p.
631, 673, 953, 1163, 1709, 2003, 2143, 2731, 2857, 3109, 3389, 3739, 4271, 4999, 5237, 5279, 5531, 5867, 6553, 6679, 6959, 7001, 7309, 7351, 7393, 8191, 8681, 9157, 9829, 10627, 10739, 11117, 11243, 11299, 11411, 11467, 13007, 13259, 15121, 15233, 15583, 16073, 18439, 18803, 20063, 20147
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Leonard Eugene Dickson, Cyclotomy and trinomial congruences, Transactions of the American Mathematical Society, 37.3 (1935): 363-380. See page 373.
Crossrefs
Cf. A042966.
Programs
-
Magma
[p: p in PrimesUpTo(50000) | IsOne(p mod 14) and exists{x: x in ResidueClassRing(p) | x^7 eq 2}]; // Bruno Berselli, Apr 02 2016
-
Maple
ans:=[]; M:=10000; e:=7; r:=2; for k from 2 to M do p:=ithprime(k); if p mod 14 = 1 then for x from 2 to p-1 do if x^e mod p = r then ans:=[op(ans),p]; break; end if; end do: end if; end do: ans; # Alternative: select(p -> isprime(p) and numtheory:-mroot(2,7,p)<>FAIL, [seq(14*i+1,i=1..3000)]); # Robert Israel, Apr 03 2018
-
Mathematica
Select[Select[14 Range[10^3] + 1, PrimeQ], Function[p, AnyTrue[Range[2, 10^4], Mod[#^7, p] == 2 &]]] (* Michael De Vlieger, Apr 02 2016, Version 10 *)
-
PARI
forprime(p=2,10^5,if(p%14!=1,next);if(Mod(2,p)^((p-1)/7)==1,print1(p,", "))); \\ Joerg Arndt, Apr 03 2016