cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270802 Primes p of the form 14*k+1 for which there is a solution to x^7 == 2 mod p.

Original entry on oeis.org

631, 673, 953, 1163, 1709, 2003, 2143, 2731, 2857, 3109, 3389, 3739, 4271, 4999, 5237, 5279, 5531, 5867, 6553, 6679, 6959, 7001, 7309, 7351, 7393, 8191, 8681, 9157, 9829, 10627, 10739, 11117, 11243, 11299, 11411, 11467, 13007, 13259, 15121, 15233, 15583, 16073, 18439, 18803, 20063, 20147
Offset: 1

Views

Author

N. J. A. Sloane, Apr 01 2016

Keywords

Crossrefs

Cf. A042966.

Programs

  • Magma
    [p: p in PrimesUpTo(50000) | IsOne(p mod 14) and exists{x: x in ResidueClassRing(p) | x^7 eq 2}]; // Bruno Berselli, Apr 02 2016
    
  • Maple
    ans:=[];
    M:=10000;
    e:=7; r:=2;
    for k from 2 to M do
        p:=ithprime(k);
        if p mod 14 = 1 then
           for x from 2 to p-1 do
              if x^e mod p = r then
                 ans:=[op(ans),p];
                 break;
              end if;
           end do:
        end if;
    end do:
    ans;
    # Alternative:
    select(p -> isprime(p) and numtheory:-mroot(2,7,p)<>FAIL, [seq(14*i+1,i=1..3000)]); # Robert Israel, Apr 03 2018
  • Mathematica
    Select[Select[14 Range[10^3] + 1, PrimeQ], Function[p, AnyTrue[Range[2, 10^4], Mod[#^7, p] == 2 &]]] (* Michael De Vlieger, Apr 02 2016, Version 10 *)
  • PARI
    forprime(p=2,10^5,if(p%14!=1,next);if(Mod(2,p)^((p-1)/7)==1,print1(p,", "))); \\ Joerg Arndt, Apr 03 2016