A270819 a(n) is the number of arithmetic progressions of length 3 among the quadratic residues modulo prime(n).
0, 0, 0, 0, 10, 12, 16, 36, 44, 84, 90, 144, 160, 210, 230, 312, 406, 420, 528, 560, 576, 702, 820, 880, 1056, 1200, 1224, 1378, 1404, 1456, 1890, 2080, 2176, 2346, 2664, 2700, 2964, 3240, 3320, 3612, 3916, 3960, 4370, 4416, 4704, 4752, 5460, 5994, 6328, 6384, 6496
Offset: 1
Keywords
Examples
For p=prime(5)=11, whose quadratic residues are (1,3,4,5,9), some examples of 3-term arithmetic progressions are (3,4,5), (4,9,3) and (5,4,3).
References
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 2.29 p. 111.
Crossrefs
Cf. A063987.
Programs
-
Mathematica
Table[(# - 1) Floor[(# - 2)/8] &@ Prime@ n, {n, 51}] (* Michael De Vlieger, Mar 23 2016 *)
-
PARI
a(n) = my(p=prime(n)); (p-1)*((p-2)\8);
Formula
a(n) = (prime(n)-1)*floor((prime(n)-2)/8).
Comments