cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270833 Numbers n > 1 where all prime factors are Wieferich primes, i.e., terms of A001220.

Original entry on oeis.org

1093, 3511, 1194649, 3837523, 12327121, 1305751357, 4194412639, 13473543253, 43280521831, 1427186233201, 4584493014427, 14726582775529, 47305610361283, 151957912148641, 5010850864768711, 16096154973653197, 51705032124882319, 166089997978464613
Offset: 1

Views

Author

Felix Fröhlich, Mar 23 2016

Keywords

Comments

The prime terms are Wieferich primes.
All "Wieferich pseudoprimes", if any exist, are in the sequence (see second comment in A240719).

Examples

			4194412639 = 1093^2 * 3511. All prime factors are Wieferich primes, so 4194412639 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Take[#, 19] &@ Rest@ Sort@ Map[1093^First@ # 3511^Last@ # &, Tuples[Range[0, 6], 2]] (* Michael De Vlieger, Mar 24 2016 *)
  • PARI
    is(n) = if(n==1, return(0)); my(f=factor(n)[, 1]); for(k=1, #f, if(Mod(2, f[k]^2)^(f[k]-1)!=1, return(0))); return(1)
    
  • PARI
    /* The following program is significantly faster; valid up to (p^x * q^y) < b, where b is the upper search bound for Wieferich primes (approximately 5*10^17 as of Mar 23 2016, see PrimeGrid PRPNet server statistics) */
    my(p=1093, q=3511, v=vector(0), w=vector(1)); for(x=0, 4, for(y=0, 4, w[1]=p^x*q^y; v=concat(v, w))); vecextract(vecsort(v,,8), "2..25")