A270834 Numbers n such that A256832(n)/A000129(n-1) is not divisible by n.
3, 7, 9, 11, 19, 23, 31, 43, 47, 67, 71, 83, 107, 127, 131, 139, 151, 163, 167, 191, 211, 263, 271, 283, 307, 311, 331, 347, 359, 367, 383, 431, 439, 463, 467, 479, 491, 499, 503, 523, 547, 563, 571, 587, 619, 631, 647, 659, 691, 719, 727, 739, 743, 787, 811, 823, 839, 859, 863, 883, 887
Offset: 1
Keywords
Examples
7 is a term because 1*2*5*12*29*169 = 588120 is not divisible by 7.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{s = Sqrt@ 2}, Select[Range[2, 90], ! Divisible[Product[Expand[((1 + s)^k - (1 - s)^k)/2 s], {k, #}]/Simplify[((1 + s)^(# - 1) - (1 - s)^(# - 1))/(2 s)], #] &]] (* Michael De Vlieger, Mar 24 2016, after Vaclav Kotesovec at A256832 and Michael Somos at A000129 *)
-
PARI
a000129(n) = ([2, 1; 1, 0]^n)[2, 1]; t(n) = Mod((prod(k=1, n, a000129(k)) / a000129(n-1)), n); for(n=2, 1e3, if(lift(t(n)) != 0, print1(n, ", ")));
-
PARI
is(n)=my(a,b=Mod(1,n),t=b); for(k=2,n-2,[a,b]=[b,a+2*b]; t*=b; if(t==0, return(0))); t*(2*a+5*b) && n>2 \\ Charles R Greathouse IV, Mar 24 2016
Comments