cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270834 Numbers n such that A256832(n)/A000129(n-1) is not divisible by n.

Original entry on oeis.org

3, 7, 9, 11, 19, 23, 31, 43, 47, 67, 71, 83, 107, 127, 131, 139, 151, 163, 167, 191, 211, 263, 271, 283, 307, 311, 331, 347, 359, 367, 383, 431, 439, 463, 467, 479, 491, 499, 503, 523, 547, 563, 571, 587, 619, 631, 647, 659, 691, 719, 727, 739, 743, 787, 811, 823, 839, 859, 863, 883, 887
Offset: 1

Views

Author

Altug Alkan, Mar 23 2016

Keywords

Comments

The computation of integers n such that A256832(n) is not divisible by n, leads to A213891. This sequence contains A213891 as a subsequence.
It appears that 9 is the only composite number in this sequence.
No composites below 10^7. - Charles R Greathouse IV, Apr 20 2016
No composites below 2*10^7. - Charles R Greathouse IV, May 06 2016

Examples

			7 is a term because 1*2*5*12*29*169 = 588120 is not divisible by 7.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Sqrt@ 2}, Select[Range[2, 90], ! Divisible[Product[Expand[((1 + s)^k - (1 - s)^k)/2 s], {k, #}]/Simplify[((1 + s)^(# - 1) - (1 - s)^(# -
    1))/(2 s)], #] &]] (* Michael De Vlieger, Mar 24 2016, after Vaclav Kotesovec at A256832 and Michael Somos at A000129 *)
  • PARI
    a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
    t(n) = Mod((prod(k=1, n, a000129(k)) / a000129(n-1)), n);
    for(n=2, 1e3, if(lift(t(n)) != 0, print1(n, ", ")));
    
  • PARI
    is(n)=my(a,b=Mod(1,n),t=b); for(k=2,n-2,[a,b]=[b,a+2*b]; t*=b; if(t==0, return(0))); t*(2*a+5*b) && n>2 \\ Charles R Greathouse IV, Mar 24 2016