A270859 Decimal expansion of Sum_{n >= 1} |G_n|/n^2, where G_n are Gregory's coefficients.
5, 2, 9, 0, 5, 2, 9, 6, 9, 9, 4, 0, 4, 3, 9, 0, 2, 4, 0, 7, 2, 2, 9, 3, 9, 3, 9, 4, 7, 5, 5, 8, 9, 7, 2, 8, 0, 9, 4, 0, 3, 8, 1, 7, 1, 6, 9, 5, 9, 6, 2, 5, 6, 9, 0, 8, 6, 1, 7, 1, 8, 2, 8, 0, 9, 7, 2, 7, 7, 7, 2, 2, 9, 6, 8, 5, 1, 1, 3, 4, 8, 0, 0, 6, 5, 2, 0, 7, 2, 8, 9, 1, 1, 3, 2, 5, 5, 9, 9, 6, 4, 0, 9, 2
Offset: 0
Examples
0.5290529699404390240722939394755897280940381716959625...
References
- Bernard Candelpergher, Ramanujan summation of divergent series, Berlin: Springer, 2017. See p. 105, eq. (3.23).
Links
- Iaroslav V. Blagouchine and Marc-Antoine Coppo, A note on some constants related to the zeta-function and their relationship with the Gregory coefficients, The Ramanujan Journal, Vol. 47 (2018), pp. 457-473. See p. 470, eq. (37); arXiv preprint, arXiv:1703.08601 [math.NT], 2017.
- Mümün Can, Ayhan Dil, Levent Kargin, Mehmet Cenkci and Mutlu Güloglu, Generalizations of the Euler-Mascheroni constant associated with the hyperharmonic numbers, arXiv:2109.01515 [math.NT], 2021.
Programs
-
Maple
evalf(int((-Li(1-x)+gamma+ln(x))/x, x = 0..1), 150)
-
Mathematica
N[Integrate[(-LogIntegral[1 - x] + EulerGamma + Log[x])/x, {x, 0, 1}], 150]
Formula
Equals Integral_{x=0..1} (-li(1-x) + gamma + log(x))/x dx, where li(x) is the logarithmic integral.
Equals A131688 + gamma_1 + gamma^2/2 - zeta(2)/2, where gamma_1 = A082633 and gamma = A001620 (Candelpergher, 2017; Blagouchine and Coppo, 2018). - Amiram Eldar, Mar 18 2024
Comments