cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270889 Integers n such that the circular graph C_n has a square size deficiency.

Original entry on oeis.org

3, 6, 27, 150, 867, 5046, 29403, 171366, 998787, 5821350, 33929307, 197754486, 1152597603, 6717831126, 39154389147, 228208503750, 1330096633347, 7752371296326, 45184131144603, 263352415571286, 1534930362283107, 8946229758127350, 52142448186480987, 303908459360758566, 1771308307978070403
Offset: 0

Views

Author

John Rafael M. Antalan, Mar 25 2016

Keywords

Comments

Define the size deficiency of a graph G as the number of edges needed to complete G. If G is a cycle graph C_n, this sequence gives the values of n for which C_n has a size deficiency which is a perfect square.

Programs

  • Mathematica
    a[0] = 3; a[1] = 6; a[n_] := a[n] = 6 a[n - 1] - a[n - 2] - 6; Table[a@ n, {n, 0, 24}] (* Michael De Vlieger, Mar 25 2016 *)
    LinearRecurrence[{7,-7,1},{3,6,27},30] (* Harvey P. Dale, Jan 23 2019 *)
  • PARI
    is(n)=issquare(n*(n-3)/2) \\ Charles R Greathouse IV, Mar 25 2016
    
  • PARI
    a(n)=([0,1,0;0,0,1;1,-7,7]^n*[3;6;27])[1,1] \\ Charles R Greathouse IV, Mar 25 2016
    
  • PARI
    Vec(3*(1-5*x+2*x^2)/((1-x)*(1-6*x+x^2)) + O(x^50)) \\ Colin Barker, Apr 03 2016

Formula

a(n+2) = 6*a(n+1) - a(n) - 6; a(0) = 3 , a(1) = 6.
G.f.: 3*(1-5*x+2*x^2)/((1-x)*(1-6*x+x^2)). - Joerg Arndt, Mar 25 2016
a(n) = 3 * A055997(n+1). - Joerg Arndt, Mar 25 2016
a(n) = 7*a(n-1)-7*a(n-2)+a(n-3) for n>2. - Colin Barker, Apr 03 2016
a(n) = 3*(2+(3-2*sqrt(2))^n+(3+2*sqrt(2))^n)/4. - Colin Barker, Apr 03 2016