A270917 Coefficient of x^n in Product_{k>=1} (1 + x^k)^(k^n).
1, 1, 4, 35, 457, 12421, 678101, 69540142, 13730026114, 5551573311817, 4379029522335786, 6705866900012021577, 21038900445652125741759, 131183458646068931932668114, 1603688863449847489871671547959, 40294004792352613617780682256221711
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..80
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, k)*binomial(i^k, j), j=0..n/i))) end: a:= n-> b(n$3): seq(a(n), n=0..20); # Alois P. Heinz, Oct 16 2017
-
Mathematica
Table[SeriesCoefficient[Product[(1+x^k)^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Formula
Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861...