cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270929 Numbers k such that (16*10^k - 31)/3 is prime.

Original entry on oeis.org

1, 2, 3, 4, 15, 20, 24, 32, 38, 40, 63, 93, 104, 194, 208, 514, 535, 600, 928, 1300, 1485, 1780, 2058, 3060, 3356, 3721, 6662, 11552, 15482, 23000, 27375, 34748, 57219, 61251, 85221, 99656, 103214, 103244, 276537
Offset: 1

Views

Author

Robert Price, Mar 26 2016

Keywords

Comments

For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 3 followed by the digits 23 is prime (see Example section).
a(40) > 3*10^5. - Robert Price, Jul 13 2023

Examples

			3 is in this sequence because (16*10^3 - 31)/3 = 5323 is prime.
Initial terms and associated primes:
a(1) = 1, 43;
a(2) = 2, 523;
a(3) = 3, 5323;
a(4) = 4, 53323;
a(5) = 15, 5333333333333323;
a(6) = 20, 533333333333333333323, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(16*10^# - 31)/3] &]
  • PARI
    isok(n) = ispseudoprime((16*10^n - 31)/3); \\ Michel Marcus, Mar 26 2016

Extensions

a(37)-a(38) from Robert Price, Mar 03 2019
a(39) from Robert Price, Jul 13 2023