cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271023 Number T(n,k) of set partitions of [n] having exactly k pairs (i,j) with i=0, 0<=k<=n*(n-1)/2 read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 0, 1, 1, 6, 3, 4, 0, 0, 1, 1, 10, 15, 10, 10, 0, 5, 0, 0, 0, 1, 1, 15, 45, 35, 60, 0, 25, 15, 0, 0, 6, 0, 0, 0, 0, 1, 1, 21, 105, 140, 210, 105, 105, 105, 0, 35, 21, 21, 0, 0, 0, 7, 0, 0, 0, 0, 0, 1, 1, 28, 210, 476, 665, 840, 350, 700, 210
Offset: 0

Views

Author

Alois P. Heinz, Mar 28 2016

Keywords

Examples

			T(3,0) = 1: 1|2|3.
T(3,1) = 3: 12|3, 13|2, 1|23.
T(3,3) = 1: 123.
Triangle T(n,k) begins:
  1;
  1;
  1,  1;
  1,  3,  0,  1;
  1,  6,  3,  4,  0, 0,  1;
  1, 10, 15, 10, 10, 0,  5,  0, 0, 0, 1;
  1, 15, 45, 35, 60, 0, 25, 15, 0, 0, 6, 0, 0, 0, 0, 1;
		

Crossrefs

Columns k=0-2 give: A000012, A161680, A050534(n-1) for n>0.
Row sums give A000110.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, x^
          add(j*(j-1)/2, j=l), b(n-1, [l[], 1])+
          add(b(n-1, subsop(j=l[j]+1, l)), j=1..nops(l)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [])):
    seq(T(n), n=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, x^Sum[j*(j-1)/2, {j, l}], b[n-1, Append[l, 1]] + Sum[b[n-1, ReplacePart[l, j -> l[[j]]+1]], {j, 1, Length[l]}]];
    T[n_] := CoefficientList[b[n, {}], x];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)

Formula

T(n,k) = A271024(n,n*(n-1)/2-k).
Sum_{k=0..n*(n-1)/2} k * T(n,k) = A105488(n+2) for n > 1.