A271025 A(n, k) is the n-th binomial transform of the Catalan sequence (A000108) evaluated at k. Array read by descending antidiagonals for n >= 0 and k >= 0.
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 15, 10, 4, 1, 42, 51, 37, 17, 5, 1, 132, 188, 150, 77, 26, 6, 1, 429, 731, 654, 371, 141, 37, 7, 1, 1430, 2950, 3012, 1890, 798, 235, 50, 8, 1, 4862, 12235, 14445, 10095, 4706, 1539, 365, 65, 9, 1, 16796, 51822, 71398, 56040, 28820, 10392, 2726, 537, 82, 10, 1
Offset: 0
Examples
The array given by integers of the form A(n,k) is illustrated below: [0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... [1] 1, 2, 5, 15, 51, 188, 731, 2950, 12235, ... [2] 1, 3, 10, 37, 150, 654, 3012, 14445, 71398, ... [3] 1, 4, 17, 77, 371, 1890, 10095, 56040, 320795, ... [4] 1, 5, 26, 141, 798, 4706, 28820, 182461, 1188406, ... [5] 1, 6, 37, 235, 1539, 10392, 72267, 516474, 3783115, ... [6] 1, 7, 50, 365, 2726, 20838, 162996, 1303485, 10642310, ... [7] 1, 8, 65, 537, 4515, 38654, 337007, 2991340, 27013723, ... [8] 1, 9, 82, 757, 7086, 67290, 648420, 6340365, 62893270, ... [9] 1, 10, 101, 1031, 10643, 111156, 1174875, 12568686, 136080971, ... Seen as a triangle: 1 1, 1 2, 2, 1 5, 5, 3, 1 14, 15, 10, 4, 1 42, 51, 37, 17, 5, 1 132, 188, 150, 77, 26, 6, 1 429, 731, 654, 371, 141, 37, 7, 1 1430, 2950, 3012, 1890, 798, 235, 50, 8, 1
Crossrefs
Programs
-
Maple
A := (n, k) -> (2/Pi)*int((k+4*x^2)^(n-k)*sqrt(1 - x^2), x=-1..1): for n from 0 to 9 do seq(A(n,k), k=0..n) od; # Peter Luschny, Jan 27 2020
-
Mathematica
A000108[n_]:= Binomial[2*n,n]/(n+1) ; T[i_,j_]: Sum[Binomial(j,k)*A000108(k)*i^(j-k), {k,0,j}] ; A[0, k_] := CatalanNumber[k]; A[n_, k_] := n^k*Hypergeometric2F1[1/2, -k, 2, -4/n]; Table[A[n, k], {n, 0, 6}, {k, 0, 8}] (* Peter Luschny, Jan 27 2020 *)
-
Sage
def A000108(n): return binomial(2*n,n)/(n+1) ; def T(i,j): return sum(binomial(j,k)*A000108(k)*i^(j-k) for k in range(j+1))
Formula
A(0,j) = A000108(j).
A(i,j) = Sum_{k=0..j} binomial(j,k)*A(i-1,k) for i >= 1.
A(i,j) = Sum_{k=0..j} binomial(j,k)*A000108(k)*i^(j-k).
From Peter Luschny, Jan 27 2020: (Start)
A(n,k) = n^k*hypergeom([1/2, -k], [2], -4/n) for n >= 1.
A(n,k) = (2/Pi)*Integral_{x=-1..1}(k + 4*x^2)^(n - k)*sqrt(1 - x^2). (End)
Comments