cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271025 A(n, k) is the n-th binomial transform of the Catalan sequence (A000108) evaluated at k. Array read by descending antidiagonals for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 15, 10, 4, 1, 42, 51, 37, 17, 5, 1, 132, 188, 150, 77, 26, 6, 1, 429, 731, 654, 371, 141, 37, 7, 1, 1430, 2950, 3012, 1890, 798, 235, 50, 8, 1, 4862, 12235, 14445, 10095, 4706, 1539, 365, 65, 9, 1, 16796, 51822, 71398, 56040, 28820, 10392, 2726, 537, 82, 10, 1
Offset: 0

Views

Author

John M. Campbell, Mar 28 2016

Keywords

Comments

Interestingly, the determinant of the n X n array of entries of the form A(i,j) is equal to the (n-1)-th superfactorial number (see A000178).
As indicated in A104455, the k-th binomial transform of A000108 will have:
o.g.f.: (1-sqrt((1-(k+4)*x)/(1-k*x)))/(2*x),
e.g.f.: exp((k+2)*x)*(BesselI(0,2x) - BesselI(1,2x)) and
a(n) = Sum_{i=0..n} binomial(n, i)*CatalanNumber(i)*k^(n-i).
The columns of this array are polynomial integer sequences. The successive polynomials corresponding to the columns of this array are: p0(n) = 1, p1(n) = n + 1, p2(n) = n^2 + 2n + 2, p3(n) = n^3 + 3*n^2 + 6*n + 5, p4(n) = n^4 + 4*n^3 + 12*n^2 + 20*n + 14, and so forth. The coefficients of these successive polynomials form a number triangle, which is given by A098474.

Examples

			The array given by integers of the form A(n,k) is illustrated below:
[0] 1, 1,  2,   5,    14,    42,     132,     429,      1430, ...
[1] 1, 2,  5,   15,   51,    188,    731,     2950,     12235, ...
[2] 1, 3,  10,  37,   150,   654,    3012,    14445,    71398, ...
[3] 1, 4,  17,  77,   371,   1890,   10095,   56040,    320795, ...
[4] 1, 5,  26,  141,  798,   4706,   28820,   182461,   1188406, ...
[5] 1, 6,  37,  235,  1539,  10392,  72267,   516474,   3783115, ...
[6] 1, 7,  50,  365,  2726,  20838,  162996,  1303485,  10642310, ...
[7] 1, 8,  65,  537,  4515,  38654,  337007,  2991340,  27013723, ...
[8] 1, 9,  82,  757,  7086,  67290,  648420,  6340365,  62893270, ...
[9] 1, 10, 101, 1031, 10643, 111156, 1174875, 12568686, 136080971, ...
Seen as a triangle:
                          1
                         1, 1
                       2, 2, 1
                      5, 5, 3, 1
                   14, 15, 10, 4, 1
                 42, 51, 37, 17, 5, 1
             132, 188, 150, 77, 26, 6, 1
          429, 731, 654, 371, 141, 37, 7, 1
      1430, 2950, 3012, 1890, 798, 235, 50, 8, 1
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> (2/Pi)*int((k+4*x^2)^(n-k)*sqrt(1 - x^2), x=-1..1):
    for n from 0 to 9 do seq(A(n,k), k=0..n) od; # Peter Luschny, Jan 27 2020
  • Mathematica
    A000108[n_]:= Binomial[2*n,n]/(n+1) ;
    T[i_,j_]: Sum[Binomial(j,k)*A000108(k)*i^(j-k), {k,0,j}] ;
    A[0, k_] := CatalanNumber[k]; A[n_, k_] := n^k*Hypergeometric2F1[1/2, -k, 2, -4/n];
    Table[A[n, k], {n, 0, 6}, {k, 0, 8}] (* Peter Luschny, Jan 27 2020 *)
  • Sage
    def A000108(n): return binomial(2*n,n)/(n+1) ;
    def T(i,j): return sum(binomial(j,k)*A000108(k)*i^(j-k) for k in range(j+1))

Formula

A(0,j) = A000108(j).
A(i,j) = Sum_{k=0..j} binomial(j,k)*A(i-1,k) for i >= 1.
A(i,j) = Sum_{k=0..j} binomial(j,k)*A000108(k)*i^(j-k).
From Peter Luschny, Jan 27 2020: (Start)
A(n,k) = n^k*hypergeom([1/2, -k], [2], -4/n) for n >= 1.
A(n,k) = (2/Pi)*Integral_{x=-1..1}(k + 4*x^2)^(n - k)*sqrt(1 - x^2). (End)