A271049 a(n) = Sum_{k>=0} (Gamma(3*n+k-1)*Gamma((k+2)/3)/(Gamma(k)*Gamma(k+1)*Gamma(n-1/3+k/3)))/(3^(n-1)*exp(1)). Dobinski-type relation.
1, 3, 105, 9157, 1467989, 372555091, 136839757533, 68506049319485, 44775766291961897, 36988728433561712899, 37653691956186855176881, 46283247358178623165789813, 67556279347568889520823938365, 115470391901500605263068596360787
Offset: 0
Keywords
Programs
-
Maple
a:=proc(n)sum(GAMMA(3*n+k-1)*GAMMA((k+2)/3)/(GAMMA(k)*GAMMA(k+1)*GAMMA(n-1/3+k/3)),k=0..infinity)/(3^(n-1)*exp(1));end: seq(a(n), n=0..10);
Formula
Special values of the hypergeometric functions of type 2F4, in Maple notation: a(n) = ((1/18)*GAMMA(3*n+2)*GAMMA(2/3)*hypergeom([n+1, n+4/3], [4/3, 4/3, 5/3, 2], 1/27)/GAMMA(n+2/3)+GAMMA(3*n)*hypergeom([n+2/3, n+1/3], [1/3, 2/3, 2/3, 4/3], 1/27)/GAMMA(n)+(1/9)*GAMMA(3*n+1)*Pi*sqrt(3)*hypergeom([n+1, n+2/3], [2/3, 1, 4/3, 5/3], 1/27)/(GAMMA(2/3)*GAMMA(n+1/3)))/(exp(1)*3^(n-1)), n=0,1,2... .
Comments