A271076 Number of ordered ways to write n as u^5 + v^4 + x^3 + 2*y^3 + 3*z^3, where u, v , x, y and z are nonnegative integers with v > 0.
1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 4, 4, 4, 4, 3, 1, 1, 3, 4, 4, 5, 4, 2, 2, 2, 5, 4, 3, 5, 2, 1, 1, 2, 5, 4, 6, 5, 2, 3, 2, 4, 5, 4, 3, 3, 3, 2, 2, 4, 5, 4, 5, 5, 1, 2, 3, 3, 5, 2, 5, 5, 3, 3, 3, 3, 3, 4, 4, 1, 1, 2, 3, 5
Offset: 1
Keywords
Examples
a(16) = 1 since 16 = 0^5 + 2^4 +0^3 + 2*0^3 + 3*0^3. a(104) = 1 since 104 = 0^5 + 2^4 + 4^3 + 2*0^3 + 3*2^3. a(188) = 1 since 188 = 2^5 + 1^4 + 3^3 + 2*4^3 + 3*0^3. a(229) = 1 since 229 = 1^5 + 3^4 + 4^3 + 2*1^3 + 3*3^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] Do[r=0;Do[If[CQ[n-u^5-v^4-3z^3-2y^3],r=r+1],{u,0,(n-1)^(1/5)},{v,1,(n-u^5)^(1/4)},{z,0,((n-u^5-v^4)/3)^(1/3)},{y,0,((n-u^5-v^4-3z^3)/2)^(1/3)}];Print[n," ",r];Continue,{n,1,80}]
Comments