A271080 Integers k such that s(k) = 7523267 + 11184810*k and s(k) + 14 are consecutive primes.
8, 16, 82, 101, 132, 187, 201, 253, 265, 300, 318, 351, 393, 408, 429, 449, 474, 489, 508, 660, 662, 673, 687, 772, 869, 877, 880, 924, 945, 958, 963, 984, 1028, 1042, 1070, 1083, 1124, 1134, 1226, 1249, 1257, 1265, 1319, 1340, 1345, 1352, 1365, 1389, 1463, 1664, 1816, 1834, 1878, 1969
Offset: 1
Keywords
Examples
8 is a term because 7523267 + 11184810*8 = 97001747 and 97001761 are consecutive (provable) Sierpiński numbers and they are also consecutive primes.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@ 2000, And[PrimeQ@ #, NextPrime@ # == # + 14] &@(7523267 + 11184810 #) &] (* Michael De Vlieger, Mar 30 2016 *) cpQ[n_]:=Module[{c=7523267+11184810n},PrimeQ[c]&&NextPrime[c]==c+14]; Select[Range[ 2000],cpQ] (* Harvey P. Dale, Oct 07 2023 *)
-
PARI
lista(nn) = for(n=0, nn, if(ispseudoprime(s=7523267 + 11184810*n) && nextprime(s+1) == (s+14), print1(n, ", ")));
-
PARI
is(n)=my(s=11184810*n+7523267); isprime(s) && isprime(s+14) && !isprime(s+6) && !isprime(s+12) \\ Charles R Greathouse IV, Mar 31 2016
Comments