cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271080 Integers k such that s(k) = 7523267 + 11184810*k and s(k) + 14 are consecutive primes.

Original entry on oeis.org

8, 16, 82, 101, 132, 187, 201, 253, 265, 300, 318, 351, 393, 408, 429, 449, 474, 489, 508, 660, 662, 673, 687, 772, 869, 877, 880, 924, 945, 958, 963, 984, 1028, 1042, 1070, 1083, 1124, 1134, 1226, 1249, 1257, 1265, 1319, 1340, 1345, 1352, 1365, 1389, 1463, 1664, 1816, 1834, 1878, 1969
Offset: 1

Views

Author

Altug Alkan, Mar 30 2016

Keywords

Comments

s(k) and s(k) + 14 are always Sierpiński numbers for k >= 0.
Motivated by the question: What are the consecutive Sierpiński numbers with difference 14 that are also consecutive primes?
See A270971 and A270993 for the reason for the definition's focus on 14.
How does the graph of this sequence look for larger values of n?

Examples

			8 is a term because 7523267 + 11184810*8 = 97001747 and 97001761 are consecutive (provable) Sierpiński numbers and they are also consecutive primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 2000, And[PrimeQ@ #, NextPrime@ # == # + 14] &@(7523267 + 11184810 #) &] (* Michael De Vlieger, Mar 30 2016 *)
    cpQ[n_]:=Module[{c=7523267+11184810n},PrimeQ[c]&&NextPrime[c]==c+14]; Select[Range[ 2000],cpQ] (* Harvey P. Dale, Oct 07 2023 *)
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(s=7523267 + 11184810*n) && nextprime(s+1) == (s+14), print1(n, ", ")));
    
  • PARI
    is(n)=my(s=11184810*n+7523267); isprime(s) && isprime(s+14) && !isprime(s+6) && !isprime(s+12) \\ Charles R Greathouse IV, Mar 31 2016