A271099 Number of ordered ways to write n as u^3 + v^3 + 2*x^3 + 2*y^3 + 3*z^3, where u, v, x, y and z are nonnegative integers with u <= v and x <= y.
1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 3, 1, 3, 3, 3, 3, 1, 2, 2, 2, 3, 4, 4, 3, 4, 2, 5, 3, 4, 5, 2, 4, 1, 1, 4, 2, 4, 3, 4, 1, 2, 1, 3, 2, 1, 4, 1, 2, 4, 2, 7, 4, 5, 5, 2, 3, 2, 3, 3, 4, 2, 5, 4, 3, 6
Offset: 0
Keywords
Examples
a(1) = 1 since 1 = 0^3 + 1^3 + 2*0^3 + 2*0^3 + 3*0^3. a(10) = 1 since 10 = 0^3 + 2^3 + 2*0^3 + 2*1^3 + 3*0^3. a(14) = 1 since 14 = 1^3 + 2^3 + 2*0^3 + 2*1^3 + 3*1^3. a(15) = 1 since 15 = 0^3 + 2^3 + 2*1^3 + 2*1^3 + 3*1^3. a(17) = 1 since 17 = 0^3 + 1^3 + 2*0^3 + 2*2^3 + 3*0^3. a(22) = 1 since 22 = 0^3 + 1^3 + 2*1^3 + 2*2^3 + 3*1^3. a(38) = 1 since 38 = 2^3 + 3^3 + 2*0^3 + 2*0^3 + 3*1^3. a(39) = 1 since 39 = 2^3 + 3^3 + 2*1^3 + 2*1^3 + 3*0^3. a(45) = 1 since 45 = 0^3 + 3^3 + 2*1^3 + 2*2^3 + 3*0^3. a(47) = 1 since 47 = 1^3 + 3^3 + 2*0^3 + 2*2^3 + 3*1^3. a(50) = 1 since 50 = 0^3 + 2^3 + 2*1^3 + 2*2^3 + 3*2^3. a(52) = 1 since 52 = 1^3 + 3^3 + 2*0^3 + 2*0^3 + 3*2^3. a(76) = 1 since 76 = 2^3 + 4^3 + 2*1^3 +2*1^3 + 3*0^3. a(102) = 1 since 102 = 0^3 + 2^3 + 2*2^3 + 2*3^3 + 3*2^3. a(103) = 1 since 103 = 1^3 + 2^3 + 2*2^3 + 2*3^3 + 3*2^3. a(188) = 1 since 188 = 3^3 + 4^3 + 2*0^3 + 2*2^3 + 3*3^3. a(295) = 1 since 295 = 1^3 + 6^3 + 2*0^3 + 2*3^3 + 3*2^3. a(366) = 1 since 366 = 2^3 + 3^3 + 2*0^3 + 2*5^3 + 3*3^3. a(534) = 1 since 534 = 1^3 + 8^3 + 2*1^3 + 2*2^3 + 3*1^3.
References
- M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math., Vol 164, Springer, 1996, Chapters 2 and 3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] Do[r=0;Do[If[CQ[n-3z^3-2x^3-2y^3-u^3],r=r+1],{z,0,(n/3)^(1/3)},{x,0,((n-3z^3)/4)^(1/3)},{y,x,((n-3z^3-2x^3)/2)^(1/3)},{u,0,((n-3z^3-2x^3-2y^3)/2)^(1/3)}];Print[n," ",r];Continue,{n,0,70}]
Comments