A271237 Number of ordered ways to write n as u^3 + 2*v^3 + 3*x^3 + 4*y^3 + 5*z^3, where u, v, x, y and z are nonnegative integers.
1, 1, 1, 2, 2, 3, 3, 3, 4, 3, 4, 3, 3, 3, 2, 3, 2, 3, 1, 2, 3, 2, 2, 1, 4, 3, 2, 3, 3, 5, 3, 4, 6, 4, 5, 4, 6, 4, 4, 3, 5, 5, 3, 6, 3, 6, 4, 4, 6, 3, 5, 4, 4, 4, 3, 4, 5, 7, 4, 6, 4, 5, 6, 4, 10, 2, 6, 8, 3, 7, 4, 8, 6, 5, 5, 4, 5, 2, 6, 1, 5, 3, 3, 8, 5, 7, 6, 6, 9, 6, 7, 6, 6, 5, 5, 6, 4, 6, 6, 8, 1
Offset: 0
Keywords
Examples
a(2) = 1 since 2 = 0^3 + 2*1^3 + 3*0^3 + 4*0^3 + 5*0^3. a(18) = 1 since 18 = 2^3 + 2*1^3 + 3*1^3 + 4*0^3 + 5*1^3. a(23) = 1 since 23 = 0^3 + 2*2^3 + 3*1^3 + 4*1^3 + 5*0^3. a(79) = 1 since 79 = 1^3 + 2*3^3 + 3*2^3 + 4*0^3 + 5*0^3. a(100) = 1 since 100 = 2^3 + 2*1^3 + 3*3^3 + 4*1^3 + 5*1^3.
References
- S. Ramanujan, On the expression of a number in the form a*x^2 + b*y^2 + c*z^2 + d*w^2, Proc. Cambridge Philos. Soc. 19(1917), 11-21.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math. 49(1927), 39-56.
- Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Programs
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] Do[r=0;Do[If[CQ[n-5z^3-4y^3-3x^3-2v^3],r=r+1],{z,0,(n/5)^(1/3)},{y,0,((n-5z^3)/4)^(1/3)},{x,0,((n-5z^3-4y^3)/3)^(1/3)},{v,0,((n-5z^3-4y^3-3x^3)/2)^(1/3)}];Print[n," ",r];Continue,{n,0,100}]
Comments