A267826 Numbers not of the form w^3 + 2*x^3 + 3*y^3 + 4*z^3, where w, x, y and z are nonnegative integers.
18, 22, 39, 60, 63, 74, 76, 77, 100, 103, 106, 107, 117, 126, 178, 180, 201, 215, 228, 230, 245, 271, 289, 291, 295, 315, 341, 356, 357, 393, 413, 419, 420, 480, 481, 523, 559, 606, 616, 671, 673, 705, 854, 855, 963, 980, 981, 998, 1103, 1121, 1130, 1298, 1484, 1510, 1643, 1729, 1849, 1916, 1934, 1946
Offset: 1
Keywords
Examples
a(1) = 18 since it is the first nonnegative integer not in the set {w^3 + 2*x^3 + 3*y^3 + 4*z^3: w,x,y,z = 0,1,2,...}.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..122
- Zhi-Wei Sun, Universal sums u^3+a*v^3+b*x^3+c*y^3+d*z^3 with u, v, x, y, z nonnegative integers, a message to Number Theory Mailing List, April 3, 2016.
Programs
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] n=0;Do[Do[If[CQ[m-4*z^3-3y^3-2x^3],Goto[aa]],{z,0,(m/4)^(1/3)},{y,0,((m-4z^3)/3)^(1/3)},{x,0,((m-4z^3-3y^3)/2)^(1/3)}];n=n+1;Print[n," ",m];Label[aa];Continue,{m,0,1946}]
Comments