A271101 Squarefree semiprimes (A006881) whose average prime factor is prime.
21, 33, 57, 69, 85, 93, 129, 133, 145, 177, 205, 213, 217, 237, 249, 253, 265, 309, 393, 417, 445, 469, 489, 493, 505, 517, 553, 565, 573, 597, 633, 669, 685, 697, 753, 781, 793, 813, 817, 865, 889, 913, 933, 949, 973, 985, 993, 1057, 1077, 1137, 1149, 1177, 1257, 1273, 1285, 1329
Offset: 1
Keywords
Examples
133 is in the sequence because 133 is a squarefree semiprime: 133=7*19, and (7+19)/2=13, a prime number.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # for terms <= N Primes:= select(isprime, [seq(i, i=3..N/3)]): SP:= [seq(seq([p, q], q = select(`<=`, Primes, min(p-1, N/p))), p=Primes)]: B:= select(t -> isprime((t[1]+t[2])/2), SP): sort(map(t -> t[1]*t[2], B)); # Robert Israel, Dec 14 2019
-
Mathematica
Select[Select[Range@ 1330, SquareFreeQ@ # && PrimeOmega@ # == 2 &], PrimeQ@ Mean[First /@ FactorInteger@ #] &] (* Michael De Vlieger, Mar 30 2016 *)
-
PARI
sopf(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) } {for (n=6, 2*10^3, if(bigomega(n)==2&&omega(n)==2, m=sopf(n)/2;if(m==truncate(m),if(isprime(m), print1(n, ", ")))))}
Comments