A271106 Number of ordered ways to write n as x^6 + 3*y^3 + z^3 + w*(w+1)/2, where x and y are nonnegative integers, and z and w are positive integers.
0, 0, 1, 1, 1, 2, 1, 2, 2, 1, 2, 3, 3, 1, 3, 3, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 2, 2, 4, 3, 3, 4, 5, 3, 2, 4, 4, 3, 2, 4, 3, 2, 2, 1, 2, 3, 4, 3, 2, 1, 1, 2, 4, 4, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 1, 5, 5, 5, 3, 4
Offset: 0
Keywords
Examples
a(9) = 1 since 9 = 0^6 + 3*0^6 + 2^3 + 1*2/2. a(24) = 1 since 24 = 1^6 + 3*0^6 + 2^3 + 5*6/2. a(1501) = 1 since 1501 = 2^6 + 3*5^3 + 3^3 + 45*46/2. a(1639) = 1 since 1639 = 0^6 + 3*6^3 + 1^3 + 44*45/2. a(3013) = 1 since 3013 = 3^6 + 3*3^3 + 13^3 + 3*4/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
- Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), 1367-1396.
Crossrefs
Programs
-
Mathematica
TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]] Do[r=0;Do[If[TQ[n-x^6-3*y^3-z^3],r=r+1],{x,0,n^(1/6)},{y,0,((n-x^6)/3)^(1/3)},{z,1,(n-x^6-3y^3)^(1/3)}];Print[n," ",r];Continue,{n,0,70}]
Comments