A271325 Number of ordered ways to write n as x^3 + y^2 + z*(3z+1), where x, y and z are integers with x positive and y nonnegative.
1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 4, 1, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 1, 4, 3, 3, 2, 2, 5, 3, 3, 2, 3, 3, 3, 4, 2, 3, 5, 2, 2, 1, 3, 3, 5, 2, 1, 3, 2, 4, 3, 6, 1, 3, 5, 2, 1, 3, 6, 2, 2, 3, 3, 3, 6, 4, 4, 2
Offset: 1
Keywords
Examples
a(13) = 1 since 13 = 2^3 + 1^2 + 1*(3*1+1). a(18) = 1 since 18 = 2^3 + 0^2 + (-2)*(3*(-2)+1). a(20) = 1 since 20 = 1^3 + 3^2 + (-2)*(3*(-2)+1). a(23) = 1 since 23 = 2^3 + 1^2 + 2*(3*2+1). a(25) = 1 since 25 = 1^3 + 0^2 + (-3)*(3*(-3)+1). a(44) = 1 since 44 = 2^3 + 6^2 + 0*(3*0+1). a(49) = 1 since 49 = 1^3 + 2^2 + (-4)*(3*(-4)+1). a(55) = 1 since 55 = 3^3+ 2^2 + (-3)*(3*(-3)+1). a(59) = 1 since 59 = 2^3 + 7^2 + (-1)*(3*(-1)+1). a(121) = 1 since 121 = 3^3 + 8^2 + 3*(3*3+1). a(238) = 1 since 238 = 4^3 + 12^2 + 3*(3*3+1).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
- Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), 1367-1396.
- Z.-W. Sun, On universal sums ax^2+by^2+f(z), aT_x+bT_y+f(z) and zT_x+by^2+f(z), preprint, arXiv:1502.03056 [math.NT], 2015.
Crossrefs
Programs
-
Mathematica
pQ[n_]:=pQ[n]=IntegerQ[Sqrt[12n+1]] Do[r=0;Do[If[pQ[n-x^3-y^2],r=r+1],{x,1,n^(1/3)},{y,0,Sqrt[n-x^3]}];Print[n," ",r];Label[aa];Continue,{n,1,70}]
Comments