A271177 Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(15) (negated).
1, 0, 7, 0, 5, 1, 8, 2, 3, 0, 0, 9, 7, 8, 2, 2, 0, 1, 7, 5, 8, 6, 3, 8, 4, 0, 5, 3, 6, 2, 0, 5, 2, 1, 3, 6, 1, 8, 7, 5, 7, 6, 1, 9, 0, 8, 4, 0, 4, 0, 2, 0, 5, 4, 9, 4, 9, 8, 7, 9, 8, 6, 0, 4, 9, 7, 2, 3, 9, 9, 6, 2, 8, 3, 4, 1, 8, 2, 3, 6, 4, 0, 9, 6, 4, 8, 1, 5, 5, 5, 8, 9, 7, 2, 0, 2
Offset: 1
Examples
-1.0705182300978220175863840536205...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2001
Programs
-
Mathematica
RealDigits[(BernoulliB[16]/16)*(EulerGamma + Log[2*Pi] - Zeta'[16]/Zeta[16]), 10, 100][[1]]
Formula
log(A(15)) = (1/16)*HarmonicNumber(15)*Bernoulli(16) - RiemannZeta'(-15).
log(A(15)) = (Bernoulli(16)/16)*(EulerGamma + log(2*Pi) - Zeta'(16)/Zeta(16)).
Comments