cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271226 a(n) = (A271222(n)^2 + 2)/3^n, n >= 0.

Original entry on oeis.org

2, 2, 3, 1, 43, 201, 67, 1289, 2278, 14662, 53782, 171798, 57266, 312537, 104179, 7353209, 14081926, 94917254, 148495259, 338541478, 2498895558, 832965186, 277655062, 45869694854, 90480235883, 230874654662
Offset: 0

Views

Author

Wolfdieter Lang, Apr 05 2016

Keywords

Comments

a(n) is an integer because b(n) = A271222(n) satisfies b(n)^2 + 2 == 0 (mod 3^n), n >= 0.
See A268924 for details, links and references.

Examples

			a(0) = (0^2 + 2)/1 = 2.
a(4) = (59^2 + 2)/3^4 = 43.
		

Crossrefs

Cf. A268924, A271222, A271224, A271225 (companion sequence).

Programs

  • PARI
    b(n) = if (n, 3^n - truncate(sqrt(-2+O(3^(n)))), 0);
    a(n) = (b(n)^2 + 2)/3^n; \\ Michel Marcus, Apr 09 2016

Formula

a(n) = (b(n)^2 + 2)/3^n, n >= 0, with b(n) = A271222(n).