cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271270 Number of set partitions of [n] such that for each pair of consecutive blocks (b,b+1) at least one pair of consecutive numbers (i,i+1) exists with i member of b and i+1 member of b+1.

Original entry on oeis.org

1, 1, 2, 5, 14, 43, 145, 536, 2157, 9371, 43630, 216397, 1137703, 6313675, 36848992, 225464838, 1442216870, 9620746697, 66781675113, 481413175433, 3597627996006, 27825925290597, 222422033403527, 1834910286704787, 15603508329713182, 136616625732498989
Offset: 0

Views

Author

Alois P. Heinz, Apr 03 2016

Keywords

Examples

			A000110(4) - a(4) = 15 - 14 = 1: 13|2|4.
A000110(5) - a(5) = 52 - 43 = 9: 124|3|5, 134|2|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|3|5, 1|24|3|5.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m, l) option remember; `if`(n=0,
          `if`({l[], 1}={1}, 1, 0), add(b(n-1, j, max(m, j),
          `if`(j=m+1, [l[], `if`(j=i+1, 1, 0)],
          `if`(j=i+1, subsop(j=1, l), l))), j=1..m+1))
        end:
    a:= n-> b(n, 0$2, []):
    seq(a(n), n=0..18);
  • Mathematica
    b[n_, i_, m_, l_] := b[n, i, m, l] = If[n == 0, If[Union[l, {1}] == {1}, 1, 0], Sum[b[n-1, j, Max[m, j], If[j == m+1, Join[l, If[j == i+1, {1}, {0}] ], If[j == i+1, ReplacePart[l, j -> 1], l]]], {j, 1, m+1}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 30 2017, translated from Maple *)

Formula

a(n) = A000110(n) - A271271(n).