A271272 Number of set partitions of [n] into m blocks such that for each pair of distinct cyclically consecutive blocks (b,c) = (b,(b mod m)+1) at least one pair of numbers (i,j) = (i,(i mod n)+1) exists with i member of b and j member of c.
1, 1, 2, 5, 13, 36, 110, 374, 1404, 5750, 25419, 120325, 606210, 3234618, 18202851, 107647893, 666903189, 4316424771, 29116689197, 204259773724, 1487336089532, 11221857590608, 87591879539120, 706286859093554, 5875489876724901, 50364717424939105, 444367708336858660
Offset: 0
Keywords
Examples
A000110(4) - a(4) = 15 - 13 = 2: 13|2|4, 1|24|3. A000110(5) - a(5) = 52 - 36 = 16: 124|3|5, 12|35|4, 134|2|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 1|235|4, 14|2|3|5, 15|24|3, 1|245|3, 1|24|3|5, 1|25|34, 1|25|3|4, 1|2|35|4.
Links
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i, m, l) option remember; `if`(n=0, `if`(l=[] or {l[]}={1} or i=m and {subsop(1=1, l)[]}= {1}, 1, 0), add(b(n-1, j, max(m, j), `if`(l=[], [1], `if`(j=m+1, subsop(1=0, `if`(j=i+1, [l[],1], [l[],0])), `if`(j=i+1 or j=1 and i=m, subsop(j=1, l), l)))), j=1..m+1)) end: a:= n-> b(n, 0$2, []): seq(a(n), n=0..18);
-
Mathematica
b[n_, i_, m_, l_] := b[n, i, m, l] = If[n==0, If[l=={} || Union[l]=={1} || i==m && Union @ ReplacePart[l, 1 -> 1] == {1}, 1, 0], Sum[b[n-1, j, Max[m, j], If[l=={}, {1}, If[j==m+1, ReplacePart[If[j==i+1, Append[l, 1], Append[l, 0]], 1 -> 0], If[j==i+1 || j==1 && i==m, ReplacePart[l, j -> 1], l]]]], {j, 1, m+1}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 18} ] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)