cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271273 Number of set partitions of [n] into m blocks such that at least one pair of distinct cyclically consecutive blocks (b,c) = (b,(b mod m)+1) exists having no pair of numbers (i,j) = (i,(i mod n)+1) with i member of b and j member of c.

Original entry on oeis.org

0, 0, 0, 0, 2, 16, 93, 503, 2736, 15397, 90556, 558245, 3607387, 24409819, 172696471, 1275310652, 9813238958, 78548445033, 652960116962, 5628482431333, 50236822145840, 463647958566143, 4419123858908203, 43445718995990792, 440083379418080388, 4588225614805060248
Offset: 0

Views

Author

Alois P. Heinz, Apr 03 2016

Keywords

Examples

			a(4) = 2: 13|2|4, 1|24|3.
a(5) = 16: 124|3|5, 12|35|4, 134|2|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 1|235|4, 14|2|3|5, 15|24|3, 1|245|3, 1|24|3|5, 1|25|34, 1|25|3|4, 1|2|35|4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m, l) option remember; `if`(n=0,
         `if`(l=[] or {l[]}={1} or i=m and {subsop(1=1, l)[]}=
          {1}, 1, 0), add(b(n-1, j, max(m, j), `if`(l=[], [1],
         `if`(j=m+1, subsop(1=0, `if`(j=i+1, [l[],1], [l[],0])),
         `if`(j=i+1 or j=1 and i=m, subsop(j=1, l), l)))), j=1..m+1))
        end:
    a:= n-> combinat[bell](n)-b(n, 0$2, []):
    seq(a(n), n=0..18);
  • Mathematica
    b[n_, i_, m_, l_] := b[n, i, m, l] = If[n == 0, If[l == {} || Union[l] == {1} || i == m && Union@ReplacePart[l, 1 -> 1] == {1}, 1, 0], Sum[b[n-1, j, Max[m, j], If[l == {}, {1}, If[j == m+1, ReplacePart[If[j == i+1, Append[l, 1], Append[l, 0]], 1 -> 0], If[j == i+1 || j == 1 && i == m, ReplacePart[l, j -> 1], l]]]], {j, 1, m+1}]]; a[n_] := BellB[n]-b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

a(n) = A000110(n) - A271272(n).