cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271324 a(n) = n + floor(n/4) + (n mod 4).

Original entry on oeis.org

0, 2, 4, 6, 5, 7, 9, 11, 10, 12, 14, 16, 15, 17, 19, 21, 20, 22, 24, 26, 25, 27, 29, 31, 30, 32, 34, 36, 35, 37, 39, 41, 40, 42, 44, 46, 45, 47, 49, 51, 50, 52, 54, 56, 55, 57, 59, 61, 60, 62, 64, 66, 65, 67, 69, 71, 70, 72, 74, 76, 75, 77, 79, 81, 80, 82, 84, 86, 85, 87, 89
Offset: 0

Views

Author

Bruno Berselli, Apr 04 2016

Keywords

Comments

Sort the terms in increasing order and add 1 to get sequence A032769.

Crossrefs

Cf. A032769.
Cf. numbers of the form m + floor(m/k) + (m mod k): A028242 (k=-2), A000004 (k=-1), A005843 (k=1), A007494 (k=2), A063224 (k=3).

Programs

  • Magma
    [n + Floor(n/4) + (n mod 4): n in [0..80]];
    
  • Mathematica
    Table[n + Floor[n/4] + Mod[n, 4], {n, 0, 80}]
  • Maxima
    makelist(n + floor(n/4) + mod(n, 4), n, 0, 80);
    
  • PARI
    vector(80, n, n--; n + floor(n/4) + n%4)
    
  • Python
    def A271324(n): return n+(n>>2)+(n&3) # Chai Wah Wu, Jan 29 2023
  • Sage
    [n + floor(n/4) + n%4 for n in (0..80)]
    

Formula

O.g.f.: x*(2 + 2*x + 2*x^2 - x^3)/((1 - x)^2*(1 + x + x^2 + x^3)).
E.g.f.: ((6 + 5*x)*sinh(x) + (3 + 5*x)*cosh(x) - 3*(sin(x) + cos(x)))/4.
a(n) = 1 + (10*n - 6*(-1)^((n-1)*n/2) - 3*(-1)^n + 1)/8.
a(4*k + r) = 5*k + 2*r, with r = 0, 1, 2 or 3.
a(n + 4*k) = a(n) + 5*k.