A271324 a(n) = n + floor(n/4) + (n mod 4).
0, 2, 4, 6, 5, 7, 9, 11, 10, 12, 14, 16, 15, 17, 19, 21, 20, 22, 24, 26, 25, 27, 29, 31, 30, 32, 34, 36, 35, 37, 39, 41, 40, 42, 44, 46, 45, 47, 49, 51, 50, 52, 54, 56, 55, 57, 59, 61, 60, 62, 64, 66, 65, 67, 69, 71, 70, 72, 74, 76, 75, 77, 79, 81, 80, 82, 84, 86, 85, 87, 89
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Programs
-
Magma
[n + Floor(n/4) + (n mod 4): n in [0..80]];
-
Mathematica
Table[n + Floor[n/4] + Mod[n, 4], {n, 0, 80}]
-
Maxima
makelist(n + floor(n/4) + mod(n, 4), n, 0, 80);
-
PARI
vector(80, n, n--; n + floor(n/4) + n%4)
-
Python
def A271324(n): return n+(n>>2)+(n&3) # Chai Wah Wu, Jan 29 2023
-
Sage
[n + floor(n/4) + n%4 for n in (0..80)]
Formula
O.g.f.: x*(2 + 2*x + 2*x^2 - x^3)/((1 - x)^2*(1 + x + x^2 + x^3)).
E.g.f.: ((6 + 5*x)*sinh(x) + (3 + 5*x)*cosh(x) - 3*(sin(x) + cos(x)))/4.
a(n) = 1 + (10*n - 6*(-1)^((n-1)*n/2) - 3*(-1)^n + 1)/8.
a(4*k + r) = 5*k + 2*r, with r = 0, 1, 2 or 3.
a(n + 4*k) = a(n) + 5*k.
Comments