A271329 a(n) is the sum of the divisors of the n-th sphenic number (A007304).
72, 96, 144, 144, 168, 216, 192, 216, 240, 252, 288, 288, 288, 324, 360, 336, 384, 360, 336, 456, 432, 384, 432, 504, 432, 528, 480, 448, 576, 480, 504, 540, 576, 648, 576, 576, 720, 576, 744, 684, 648, 576, 640, 816, 720, 756, 720, 864, 672, 792, 768, 720
Offset: 1
Keywords
Examples
a(1) = 72 because the divisors of A007304(1) = 30 are {1,2,3,5,6,10,15,30}, the sum of which is 72.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Wikipedia, Sphenic number
Programs
-
Mathematica
DivisorSigma[1,#]&/@With[{upto=500},Sort[Select[Times@@@Subsets[ Prime[ Range[ Ceiling[ upto/6]]],{3}],#<=upto&]]] (* Harvey P. Dale, May 30 2020 *)
-
PARI
L=List(); for(n=1, 1000, if(bigomega(n)==3 && omega(n)==3, listput(L, sum(k=1, 8, divisors(n)[k])))); Vec(L)
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot, divisor_sigma def A271329(n): def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return divisor_sigma(bisection(f)) # Chai Wah Wu, Aug 30 2024