cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271329 a(n) is the sum of the divisors of the n-th sphenic number (A007304).

Original entry on oeis.org

72, 96, 144, 144, 168, 216, 192, 216, 240, 252, 288, 288, 288, 324, 360, 336, 384, 360, 336, 456, 432, 384, 432, 504, 432, 528, 480, 448, 576, 480, 504, 540, 576, 648, 576, 576, 720, 576, 744, 684, 648, 576, 640, 816, 720, 756, 720, 864, 672, 792, 768, 720
Offset: 1

Views

Author

Colin Barker, Apr 04 2016

Keywords

Examples

			a(1) = 72 because the divisors of A007304(1) = 30 are {1,2,3,5,6,10,15,30}, the sum of which is 72.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1,#]&/@With[{upto=500},Sort[Select[Times@@@Subsets[ Prime[ Range[ Ceiling[ upto/6]]],{3}],#<=upto&]]] (* Harvey P. Dale, May 30 2020 *)
  • PARI
    L=List(); for(n=1, 1000, if(bigomega(n)==3 && omega(n)==3, listput(L, sum(k=1, 8, divisors(n)[k])))); Vec(L)
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, divisor_sigma
    def A271329(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return divisor_sigma(bisection(f)) # Chai Wah Wu, Aug 30 2024

Formula

a(n) = A000203(A007304(n)). - Omar E. Pol, Dec 08 2019