A271349 Numbers n such that n - 35, n - 1, n + 1 and n + 35 are consecutive primes.
276672, 558828, 1050852, 1278288, 1486908, 1625418, 2536308, 2538918, 2690958, 2731242, 3015162, 3252678, 3268338, 3508278, 3711612, 4233708, 4575912, 4717962, 5004402, 5108352, 5404032, 5482782, 5519082, 5525328, 5640918, 5654358, 5995818
Offset: 1
Keywords
Examples
276672 is the average of the four consecutive primes 276637, 276671, 276673, 276707. 558828 is the average of the four consecutive primes 558793, 558827, 558829, 558863.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Mathematica
Select[Partition[Prime[Range[500000]],4,1],Differences[#]=={34,2,34}&] [[All, 2]]+1 (* Harvey P. Dale, Oct 11 2017 *)
-
Python
from sympy import isprime,prevprime,nextprime for i in range(0,1000001,6): if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-35 and nextprime(i+1) == i+35 : print (i,end=', ')
Comments