A271363 Irregular triangle read by rows: T(0, 0) = 2; T(i, j) is the j-th term in the least maximal chain of composites that is longer than the (i-1)-st least maximal chain of composites, where i>0.
2, 4, 3, 14, 15, 17, 18, 21, 25, 31, 40, 55, 77, 111, 163, 50, 69, 99, 147, 225, 353, 60, 85, 123, 185, 285, 447, 721, 1185, 1981, 3363, 5777, 10039, 82, 119, 177, 273, 429, 693, 1135, 1891, 3201, 5497, 9543, 16723, 29579, 52737, 94705, 171147, 311101
Offset: 0
Examples
a(0) = T(0, 0) = 2 since 2 is an even prime. a(5) = T(2,2) = 17 since 2*A065855(2*A065855(T(2,0))+1)+1 = 2*A065855(2*A065855(14)+1)+1 = 2*A065855(2*7+1)+1 = 2*A065855(15)+1 = 2*8+1 = 17 and the maximal chain of composites starting at 14 is the first of length 3. The triangle T(i, j) with complete rows 0..6 and parts of rows 7 and 8: -------------------------------------------------------------------------- i\j 0 1 2 3 4 5 6 7 8 9 10 11 ... -------------------------------------------------------------------------- 0: 2 1: 4 3 2: 14 15 17 3: 18 21 25 31 4: 40 55 77 111 163 5: 50 69 99 147 225 353 6: 60 85 123 185 285 447 721 1185 1981 3363 5777 10039 7: 82 119 177 273 429 693 1135 1891 3201 5497 9543 16723 ... 8: 490 793 1309 2189 3723 6407 11145 19591 34737 62055 111633 202093 ... The entire right boundary of the triangle is A263570. All numbers in the triangle through T(8, 31) can be found in the link.
Links
- Hartmut F. W. Hoft, Table of n, a(n) for n = 0..88
Programs
-
Mathematica
(* a271363[n] computes a maximal chain of composites starting at n *) composites[{m_, n_}] := Module[{i, count=0}, For[i=m, i<=n, i++, If[CompositeQ[i], count++]]; count] a271363[n_] := Module[{i=n, j=composites[{0, n}], h, list={}}, While[CompositeQ[i], AppendTo[list, {i, j}]; h=composites[{i, 2*j+1}]; i=2*j+1; j+=h-1]; AppendTo[list, {i, j}]] Map[First, ax271363[82]] (* computes row 7 *)
Comments