cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271370 Total number of inversions in all partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 18, 38, 68, 120, 200, 326, 508, 785, 1179, 1741, 2532, 3633, 5141, 7199, 9972, 13680, 18618, 25116, 33642, 44738, 59139, 77653, 101444, 131751, 170320, 219049, 280553, 357652, 454254, 574507, 724135, 909265, 1138169, 1419737, 1765884, 2189441
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2016

Keywords

Examples

			a(3) = 1: one inversion in 21.
a(4) = 3: one inversion in 31, and two inversions in 211.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
          add((p-> p+[0, p[1]*j*t])(b(n-i*j, i-1, t+j)), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, {1, 0}, If[i<1, 0, Sum[Function[p, If[p === 0, 0, p+{0, p[[1]]*j*t}]][b[n-i*j, i-1, t+j]], {j, 0, n/i}]]];
    a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 03 2017, translated from Maple *)

Formula

a(n) = Sum_{k>0} k * A264033(n,k).