A271370 Total number of inversions in all partitions of n.
0, 0, 0, 1, 3, 9, 18, 38, 68, 120, 200, 326, 508, 785, 1179, 1741, 2532, 3633, 5141, 7199, 9972, 13680, 18618, 25116, 33642, 44738, 59139, 77653, 101444, 131751, 170320, 219049, 280553, 357652, 454254, 574507, 724135, 909265, 1138169, 1419737, 1765884, 2189441
Offset: 0
Keywords
Examples
a(3) = 1: one inversion in 21. a(4) = 3: one inversion in 31, and two inversions in 211.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Inversion (discrete mathematics)
- Wikipedia, Partition (number theory)
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add((p-> p+[0, p[1]*j*t])(b(n-i*j, i-1, t+j)), j=0..n/i))) end: a:= n-> b(n$2, 0)[2]: seq(a(n), n=0..60);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n==0, {1, 0}, If[i<1, 0, Sum[Function[p, If[p === 0, 0, p+{0, p[[1]]*j*t}]][b[n-i*j, i-1, t+j]], {j, 0, n/i}]]]; a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 03 2017, translated from Maple *)
Formula
a(n) = Sum_{k>0} k * A264033(n,k).