cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A271370 Total number of inversions in all partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 18, 38, 68, 120, 200, 326, 508, 785, 1179, 1741, 2532, 3633, 5141, 7199, 9972, 13680, 18618, 25116, 33642, 44738, 59139, 77653, 101444, 131751, 170320, 219049, 280553, 357652, 454254, 574507, 724135, 909265, 1138169, 1419737, 1765884, 2189441
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2016

Keywords

Examples

			a(3) = 1: one inversion in 21.
a(4) = 3: one inversion in 31, and two inversions in 211.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
          add((p-> p+[0, p[1]*j*t])(b(n-i*j, i-1, t+j)), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, {1, 0}, If[i<1, 0, Sum[Function[p, If[p === 0, 0, p+{0, p[[1]]*j*t}]][b[n-i*j, i-1, t+j]], {j, 0, n/i}]]];
    a[n_] := b[n, n, 0][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 03 2017, translated from Maple *)

Formula

a(n) = Sum_{k>0} k * A264033(n,k).

A271372 Total number of inversions in all compositions of n into distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 11, 12, 21, 31, 112, 122, 212, 294, 456, 1147, 1381, 2144, 3059, 4494, 6081, 13597, 15928, 24716, 33728, 49260, 65016, 93229, 169249, 210206, 304979, 417600, 584037, 779731, 1076824, 1409102, 2418068, 2950722, 4213584, 5581351, 7779829
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2016

Keywords

Examples

			a(3) = 1: 21.
a(4) = 1: 31.
a(5) = 2: 41, 32.
a(6) = 11: one inversion in each of 51, 132, 42, 213, two inversions in each of 231, 312, three inversions in 321.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t!*t*(t-1)/4, b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, i-1, t+1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t!*t*(t - 1)/4, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t + 1]]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2018, from Maple *)

Formula

a(n) = Sum_{k>=1} A001809(k) * A008289(n,k).
Showing 1-2 of 2 results.