cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A271384 Least k with precisely n partitions k = x + y satisfying phi(k) = phi(x) + phi(y), where phi(k) is the Euler totient function of k.

Original entry on oeis.org

3, 14, 20, 28, 44, 92, 112, 224, 266, 260, 404, 380, 476, 552, 558, 696, 860, 984, 846, 1062, 1388, 1128, 1278, 1752, 1494, 1422, 2034, 1926, 1704, 1992, 2358, 2466, 2712, 2424, 2718, 3222, 3006, 3258, 4924, 3288, 3582, 4296, 3798, 4008, 4518, 5688, 5094, 5352
Offset: 1

Views

Author

Paolo P. Lava, Apr 06 2016

Keywords

Examples

			phi(28) = phi(6) + phi(22) = phi(8) + phi(20) = phi(12) + phi(16) = phi(14) + phi(14) = 12 and 28 is the least number with 4 partitions of two numbers with this property: therefore a(4) = 28;
phi(112) = phi(14) + phi(98) = phi(24) + phi(88) = phi(30) + phi(82) = phi(32) + phi(80) = phi(36) + phi(76) = phi(48) + phi(64) = phi(56) + phi(56) = 48 and 112 is the least number with 7 partitions of two numbers with this property: therefore a(7) = 112.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,h,k,n; for h from 1 to q do
    for n from 2*h to q do a:=0; for k from 1 to trunc(n/2) do if phi(n)=phi(k)+phi(n-k) then a:=a+1; fi; od;
    if a=h then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Table[SelectFirst[Range[10 + 5 n^2], Function[k, With[{e = EulerPhi@ k},
    Count[Transpose@ {Range[k - 1, Ceiling[k/2], -1], Range@ Floor[k/2]}, x_ /; Total@ EulerPhi@ x == e] == n]]], {n, 25}] (* Michael De Vlieger, Apr 06 2016, Version 10 *)
Showing 1-1 of 1 results.