A283528 The number of phi-partitions of n.
0, 0, 1, 1, 2, 0, 3, 4, 8, 2, 4, 1, 5, 8, 24, 24, 6, 2, 7, 15, 107, 46, 8, 4, 135, 101, 347, 83, 9, 0, 10, 460, 1019, 431, 1308, 13, 11, 842, 2760, 214, 12, 2, 13, 1418, 5124, 2977, 14, 42, 2021, 720, 17355, 4997, 15, 70, 21108, 3674, 40702, 16907, 16, 1, 17
Offset: 1
Keywords
Examples
a(7) = 3 counts the partitions 1+1+1+1+1+2 = 1+1+1+1+3 = 1+1+5. a(8) = 4 counts the partitions 2+2+2+2 = 2+2+4 = 4+4 = 1+1+6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 100 terms from Giovanni Resta)
- P. Jones, Phi-partitions, Fib. Quart. 29 (4) (1991) 347-350.
- C. Powell, On the uniqueness of reduced phi-partitions, Fib. Quart. 34 (3) (1996) 194-199.
- J. Wang, Reduced phi-partitions of positive integers, Fib. Quart. 31 (4) (1993) 365-369.
Programs
-
Maple
A283528 := proc(n) local a,k,phip ; a := 0 ; for k in combinat[partition](n) do if nops(k) > 1 then phip := add( numtheory[phi](p),p =k) ; if phip = numtheory[phi](n) then a := a+1 ; end if; end if; end do: a ; end proc: # second Maple program: with(numtheory): b:= proc(n, m, i) option remember; `if`(n=0, `if`(m=0, 1, 0), `if`(i<1 or m<0, 0, b(n, m, i-1)+ `if`(i>n, 0, b(n-i, m-phi(i), i)))) end: a:= n-> b(n, phi(n), n)-1: seq(a(n), n=1..70); # Alois P. Heinz, Mar 10 2017
-
Mathematica
Table[ Length@ IntegerPartitions[n 10^7 + EulerPhi[n], {2, Infinity}, EulerPhi@ Range[n-1] + 10^7 Range[n-1]], {n, 60}] (* Giovanni Resta, Mar 10 2017 *) b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1 || m < 0, 0, b[n, m, i - 1] + If[i > n, 0, b[n - i, m - EulerPhi[i], i]]]]; a[n_] := b[n, EulerPhi[n], n]-1; Array[a, 70] (* Jean-François Alcover, Jun 01 2021, after Alois P. Heinz *)
Extensions
a(56)-a(61) from Giovanni Resta, Mar 10 2017
Comments